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The intensive utilization of residential space is crucial to the transition to a carbon-
neutral residential sector, especially for emerging economies with massive housing 
construction, such as China, although it has received far less attention in the literature. 
Here, we develop a novel methodology to estimate the volume of unused housing in 
urban China, defined as dwelling units that have been built and sold for at least two 
years but never occupied. By early 2021, 17.4% of the housing stock built in China 
during the first two decades of this century remained unused, with the unused rate being 
particularly high in most third-tier cities. The construction and operation of unused 
housing produce 28.26 million tons of CO2 annually at the national level, which 
accounts for 4.3% of the Chinese residential sector’s carbon emissions, or 19.7% of the 
carbon emission reductions achieved by China’s primary ongoing residential 
decarbonization efforts from the efficiency perspective. Our projections for 2021–2030 
indicate avoiding the further increase of unused housing and utilizing existing unused 
dwelling units can make a significant decarbonization contribution. 
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One-third of worldwide carbon emissions are attributable to the construction and 

operation of residential buildings1, making the residential sector a key component of 

global carbon mitigation. Decarbonizing the residential sector is particularly 

challenging in emerging economies such as China, where the housing stock continues 

to rise rapidly. Between 2001 and 2020, China built 11.47 billion sq.m. of urban housing, 

accounting for about half of the world’s new housing2. 

The majority of current efforts to decarbonize the residential sector, in both China 

and most developed economies, are centered on the “efficiency” perspective, which 

seeks to reduce the carbon emission intensity associated with the life cycle of residential 

buildings through measures such as construction material substitution during the 

materialization stage3,4 and energy efficiency improvement during the operation stage5,6. 

Nevertheless, the “sufficiency” perspective, which focuses on the intensive usage of 

residential buildings, plays an even greater role in the pathway to establishing a carbon-

neutral residential sector7-9. For instance, studies based on the U.S. and several other 

developed economies imply housing size is the primary determinant of residential 

carbon emissions in their countries7,10. In the context of China, where the volume of 

newly built housing construction has remained at an increasingly high level during the 

past two decades, the sufficiency perspective concentrates on the potential oversupply 

associated with the extensive new construction11,12. However, a comprehensive 

assessment of under-occupied housing and its impact on carbon emissions is absent. 

This study focuses on an extreme type of under-occupied housing in urban China, 

“unused housing,” which refers to dwelling units that have never been occupied for at 
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least two years since they were completed and sold to households. Based on a novel 

approach, our estimate suggests that in early 2021, 17.4% of the housing stock 

completed between 2001 and 2018 in urban China remained unused. The unused rate 

is particularly high in cities or housing sectors that are more likely to have experienced 

a substantial housing oversupply during the last two decades, especially in the majority 

of third-tier cities. Moreover, our analyses reveal unused housing generates a large 

volume of carbon emissions and thus remarkably counteracts China’s ongoing efforts 

to decarbonize the residential sector. Taking the year 2020 as an example, the 

construction and operation of unused housing resulted in the emission of 28.26 million 

tons of CO2 at the national level, which accounts for 4.3% of the total residential sector 

carbon emissions and is equivalent to around 19.7% of the carbon emission reduction 

achieved by the Chinese government’s four major carbon mitigating measures in the 

residential sector. Naturally, utilizing existing unused housing and avoiding its further 

expansion should be designated as a top priority in the pathway to establishing a carbon-

neutral residential sector in China. Our projections suggest Chinese residential sector’s 

total carbon emissions in 2021–2030 can be reduced by 9.0% if the current unused rate 

is cut by half by 2030. 

 

Definition and Estimation Method of Unused Housing 

Researchers and policymakers typically adopt the term “vacancy” for all 

unoccupied housing without residents at the time of investigation. Nevertheless, various 

types of housing vacancy have vastly different implications for decarbonization: some 
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dwelling units are only temporarily vacant during normal housing turnovers in the 

market13,14; some units are occasionally vacant but still serve households’ specific 

housing demand as seasonal or second homes15; and some units have become obsolete 

due to deteriorating physical or neighborhood conditions16 but were previously fully 

inhabited. Whether eliminating the aforementioned types of vacancies without 

impairing housing market efficiency or resident well-being is feasible remains an open 

question. Here, we focus on a specific type of vacancy closest to resource waste—

dwelling units that remain unoccupied after completion for an extended period of time. 

For this purpose, we define a dwelling unit as “unused” if (1) it has been sold to a 

household instead of being held by its developer, (2) it has been completed for at least 

two years (so that the owner/renter has sufficient time to decorate the interior and move 

in), and, most importantly, (3) it has never been occupied by the time of investigation. 

From the standpoint of sustainable development, this specific type of housing vacancy 

should and can be mitigated, if not avoided altogether, and should thus be prioritized 

when decarbonizing the residential sector. However, no current statistics on the volume 

or proportion of such unused housing in China (or any other major economy) are 

available; therefore, we develop our own methodology. 

As conceptually illustrated in Fig. 1, the method consists of two core procedures. 

The first step utilizes the visual information of online-listed dwelling units to identify 

all unused units in the full-sample online-listed unit observations in the target city, 

achieving the proportion of unused units among online-listed units (i.e., the listing-

based unused rate, or LUR). Typically, the seller or her agent of a listed dwelling unit 
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in China uploads the listing information onto one or more online platforms for free to 

disseminate the information to potential buyers17. In almost all cases, in addition to the 

text-format information, the seller or her agent uploads multiple indoor photos of the 

property to depict the current housing conditions, which has proven crucial for 

attracting buyers’ attention18,19. Extended Data Fig. 1 presents representative examples 

of such indoor photos, based on which we, or a trained deep learning model, can 

discriminate between unused units (Types I–III in the figure) and units that are currently 

or were once occupied (“occupied units” hereafter; Types IV and V). As described in 

detail in “Methods,” we develop a supervised deep learning algorithm to classify each 

photo as unused or occupied, and then aggregate the classification results of all photos 

associated with each dwelling unit to identify whether the unit is unused. We also use 

multiple methods to validate the accuracy of the classification results in Supplementary 

Section 1.  

The second step converts the LUR to the stock-based unused rate (SUR, defined as 

the proportion of unused units throughout the entire housing stock in the target city), 

which is our main interest, with an emphasis on the correction of two potential sampling 

biases. First, we adopt the information on the interval between the current listing and 

the previous transaction of the same unit to correct the potential difference in resale 

probability between unused and occupied units. Second, we rely on the information 

from existing literature and macro-level statistics to consider the potential difference in 

the probability of adopting online listing between unused and occupied units. The 

details are provided in “Methods.” 
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**Insert Fig. 1 about here** 

Note that, besides the baseline estimate in which we adopt the most likely 

parameters in these two procedures, we also consider a conservative estimate that tends 

to achieve the lower bound of SUR. 

 

Results 

Volume of unused housing in major cities 

We collected information on all dwelling units listed between October 2020 and 

August 2021 on a leading, anonymous online housing listing platform in mainland 

China, covering 56 major cities (Supplementary Table 1). In 2020, these 56 cities 

accounted for 45.0% of the urban population, 53.4% of GDP, and 48.4% of the urban 

housing completions in China. In each city, we focus on housing communities 

completed by real estate developers between 2001 and 2018, considering that China’s 

real estate industry only emerged at the beginning of this century. 

Fig. 2 depicts the baseline estimate of the city-level SURs during the sample period 

(we take the mid-point of the sample period, early 2021, to represent the sample period 

in the following discussions). The corresponding results of the conservative estimate 

are displayed in Extended Data Fig. 2. We also verify the reliability of the estimates 

based on other housing market indicators (Supplementary Section 3). 

Generally, the results indicate a substantial portion of new homes completed during 

the first two decades of this century in China had never been occupied by early 2021. 

Using the city-level aggregated housing completions between 2001 and 2018 as the 
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weight, the weighted-average SUR of these 56 major cities reached 17.4%; that is, for 

every six dwelling units completed and sold to households between 2001 and 2018, at 

least one unit had not been occupied by early 2021. Based on the volume of housing 

completions in real estate development, the unused rate of 17.4% can be converted to a 

total of 0.93 billion sq.m. of unused housing in these 56 cities. Two facts may facilitate 

an intuitive comprehension of this magnitude. First, the unused volume is equivalent to 

293% of the annual housing completions in these 56 cities in 2020. Second, the unused 

volume can accommodate 24.19 million residents, or 6.0% of the urban population in 

these 56 cities, based on the per capita living space for urban Chinese residents of 38.6 

sq.m. in 2020. The conservative estimate puts the unused rate and volume at 12.5% and 

0.67 billion sq.m., respectively—a lower but still striking number. 

**Insert Fig. 2 about here** 

Fig. 2 also demonstrates substantial inter-city variances, particularly from an 

across-tier viewpoint. In three first-tier cities—Beijing (3.0%), Shanghai (3.8%), and 

Shenzhen (4.1%)—the SUR is below 5%. Guangzhou is the only first-tier city with a 

double-digit SUR (14.8%). The second-tier cities witness larger variations: the SUR is 

moderate in cities such as Suzhou (7.5%), Hangzhou (8.6%), and Tianjin (9.0%), but 

remarkable in several other second-tier cities in West China, such as Chengdu (17.4%), 

Xi’an (24.6%), and Chongqing (25.8%). Most third-tier cities have a large proportion 

of unused housing, with a weighted-average SUR of 25.3%. Specifically, the unused 

rate exceeds 30% in nine third-tier cities. Therefore, given that over 250 cities not 

included in our sample are all third-tier or smaller cities, interpreting the weighted-
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average SUR of the 56 sample cities (17.4%) as the lower bound of the national-level 

SUR is plausible. In this case, the total volume of unused housing at the national level 

would reach 1.76 billion sq.m. in early 2021—more than half of the overall housing 

stock in France (2.57 billion sq.m. in 2020). 

Fig. 3 presents evidence that such an inter-city variation pattern is consistent with 

the widespread concern about the potential oversupply in China’s housing market. 

Panel A splits the sample cities into three categories based on the ratio between 

aggregated housing completions in 2001–2020 and population growth during the same 

period, which serves as a proxy for excess housing supply in the city. The results 

indicate the unused rate was significantly higher in cities with a larger supply-demand 

ratio during these two decades. In the next two panels, we divide the sample cities 

according to two major housing supply determinants disclosed by the literature. 

Geographically, Panel B reveals the SUR was significantly higher in cities with higher 

land supply elasticity, measured by the quantity of flat land area (i.e., area of non-water 

land with a slope below 15 degrees) in the city, normalized by the population in 200020. 

Institutionally, Panel C demonstrates the SUR was significantly higher in cities with 

larger budget deficits in 2001–2020, which serves as a proxy for local governments’ 

dependence on income from residential land sales as off-budget revenues21. In other 

words, a city is more likely to witness a higher SUR if it has more developable land 

resources for housing development and/or its local authority has to sell more residential 

land to generate off-budget revenues, which further attests to the linkage between the 

high unused rate and potential housing oversupply. 
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**Insert Fig. 3 about here** 

The within-city analysis, as depicted in Fig. 4, also supports such a linkage. Within 

the same city, the unused housing phenomenon spreads widely across communities, 

instead of concentrating in a few “ghost towns.” As an example, Extended Data Fig. 3 

depicts the distribution of community-level unused rates in Xi’an. However, the unused 

rate is still significantly higher in the suburbs (i.e., communities whose distances to the 

city center are above the top quartile; Panel A of Fig. 4), which is consistent with the 

pattern that housing oversupply is more likely to emerge in the suburbs in contemporary 

China21. Similarly, larger dwelling units tend to have a higher unused rate due to 

potential oversupply (over 140 sq.m. in unit size; Panel B). On the other hand, SUR 

tends to decrease with building age (Panel C): the unused rate in the building cohort 

aged between three and five years reached 46.5% and then dropped to 30.0% in the 

cohort of 6–8 years, 15.8% in the cohort of 9–11 years, and 5.8% in the cohort of 12–

20 years. On average, the unused units had remained unused for 6.5 years by early 2021. 

Nevertheless, we provide the analysis of the “constant-quality” SURs (Supplementary 

Section 4), which controls for the effect of micro-level housing attributes on the city-

level unused rates, and the results demonstrate the patterns shown in Fig. 2 and Fig. 3 

are not driven by the composition effect within the cities. 

**Insert Fig. 4 about here** 

Effect on carbon emissions 

We then convert the estimated volume of unused housing to carbon emissions. As 

detailed in “Methods,” for each square meter of unused housing in early 2021, we 
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calculate its annually amortized materialization carbon emissions (with an expected 

service lifespan of 50 years) and annual central heating carbon emissions (only for cities 

in Northern China), respectively, assuming unused housing does not generate other 

operating carbon emissions, such as cooking and lighting. We can then calculate the 

aggregated volume of avoidable carbon emissions associated with all the unused 

dwelling units in 2020. As listed in Fig. 5, the total volume of preventable carbon 

emissions associated with unused housing in these 56 cities amounted to 13.32 million 

tons of CO2 based on the baseline estimate. Here, we compare the total magnitude with 

two standards. First, our estimates indicate the total carbon emissions in the residential 

sector of these 56 cities, including those embedded in construction and materials in new 

housing and those consumed in operating housing, was approximately 334.56 million 

tons of CO2 in 2020; thus, unused housing accounted for 4.0% of the total residential 

carbon emissions. Second, over the past two decades, the Chinese government has 

prioritized four key measures for decarbonizing the urban residential sector: lowering 

carbon intensity in steel and cement production, promoting prefabricated buildings with 

lower carbon emissions in the construction stage, promoting green buildings with lower 

carbon emissions in the operation stage, and renovating existing buildings to improve 

energy efficiency2,6,9,22-25. We estimate that, compared with the carbon emissions based 

on initial intensity factors at the level of the year 2000, these four measures achieved 

an overall carbon emission reduction of 73.76 million tons of CO2 in the residential 

sector of these 56 cities in 2020. In other words, the unnecessary carbon emissions of 

unused housing were equivalent to 18.1% of the carbon emission reduction by these 
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four measures. Therefore, China’s continuous efforts to decarbonize the residential 

sector have been significantly impeded by excessive housing supply and the massive 

volume of unused housing. Unused housing’s carbon emissions would have reduced to 

10.97 million tons in 2020 if we adopted the conservative estimate (Extended Data Fig. 

4), which still accounts for 3.2% of overall residential carbon emissions and offsets 

14.7% of carbon emission mitigation in the 56 sample cities.  

We also estimate the overall volume of preventable carbon emissions associated 

with unused housing in the whole country. Specifically, we adopt the weighted-average 

unused rate of the 56 sample cities (17.4%) as the national-level housing unused rate to 

take into consideration the other 250 cities. In this case, unused housing cost 28.26 

million tons of CO2 in 2020 based on the baseline estimate. The overall magnitude 

accounted for 4.3% of the total residential carbon emissions and offset 19.7% of carbon 

emission mitigation at the national level. In Supplementary Section 5, we also provide 

another two methods to estimate the unused housing carbon emissions in 2020. The 

results are close to the current method, although the alternative methods must rely on 

more assumptions. 

**Insert Fig. 5 about here** 

Consistent with Fig. 2, the results in Fig. 5 emphasize the importance of unused 

housing in third-tier cities. Taking Xi’an, the capital city of Shaanxi Province, with an 

estimated SUR of 24.5%, as an example, the carbon emissions generated by the 

construction and operation of unused housing amounted to 0.78 million tons, which 

accounted for 10.6% of its residential carbon emissions (7.38 million tons) in 2020. By 
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contrast, in superstar cities with low unused rates, such as Beijing, the impact of unused 

housing on carbon emissions is modest. Meanwhile, unused housing’s carbon emissions 

are generally higher in Northern China due to the existence of central-heating emissions, 

which further exaggerate the waste associated with unused housing. 

The above findings point out new policy priorities in China’s subsequent efforts to 

establish a carbon-neutral residential sector. On the one hand, policymakers should aim 

to avoid further housing oversupply, primarily through guiding the residential industry 

by implementing long-term and annual housing development plans, as well as 

associated residential land supply schemes, based on high-quality housing demand 

forecasts. Lowering local governments’ reliance on land sales revenues and the 

resulting residential land oversupply through a reform of the current local fiscal system 

can also contribute to this goal. On the other hand, local governments can also commit 

to utilize at least a portion of the unused dwelling units to meet new housing demand, 

hence partially replacing the demand for new housing construction. This objective can 

be facilitated by, for instance, imposing a property tax on vacant units, which can 

increase the homeownership cost for unused dwelling units while minimizing the 

potential unintended effect on housing demand. Fig. 6 presents our forecast on the 

impact of these initiatives on China’s national-level residential sector carbon emissions 

between 2021 and 2030. For the benchmark, we assume the Chinese government makes 

no attempts to eliminate the increase in unused housing or utilize existing unused 

housing, and hence, the unused rate at the end of 2030 remains at the same level as the 

end of 2020. Compared with this benchmark scenario, the total carbon emissions in the 
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residential sector can be reduced by 4.7% if the unused rate can be gradually lowered 

to 13.0% in 2030 (i.e., 75% of 17.4%), 9.0% if the unused rate can be lowered to 8.7% 

(i.e., cut by half) in 2030, or 13.0% if the unused rate can reach 4.3% (i.e., 25% of 

17.4%) in 2030. Not surprisingly, the potential achievement of unused-housing-related 

decarbonization measures is particularly pronounced in cities with high unused rates at 

present, such as Xi’an. We estimate its residential carbon emissions in 2021–2030 can 

be reduced by 12.7% if its unused rate can be cut by nearly half from 24.6% at the end 

of 2020 to 12.4% in 2030. By contrast, because the unused rate is currently only 3.0% 

in Beijing, the potential to further lower its unused rate, as well as its carbon-emission-

reduction contribution, is limited. Note that, besides the aforementioned measures in 

cutting the unused rates, policymakers can also seek to reduce the carbon emissions 

associated with unused units. In particular, in the northern cities, both technique and 

policy measures can be implemented to reduce the central-heating emissions of the 

unused units. 

**Insert Fig. 6 about here** 

 

Conclusion 

This study echoes recent literature that highlights the importance of the sufficiency 

perspective in decarbonizing the residential sector. Using a novel method based on 

indoor photos of online listings, our calculations in 56 major Chinese cities indicate 

17.4% of dwelling units completed between 2001 and 2018 had never been occupied 

by early 2021, with the phenomenon being most pronounced in relatively smaller cities 
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that have arguably experienced a massive housing oversupply over the past two decades. 

The construction and operation of this vast amount of unused housing produce 4.3% of 

Chinese residential sector’s carbon emissions, which could and should be avoided. The 

avoidable emissions associated with unused housing significantly offset China’s 

ongoing efforts to mitigate the residential sector’s carbon emissions. Nevertheless, the 

research findings also indicate substantial potential for decarbonizing China’s 

residential sector—our forecast implies the total carbon emissions can be reduced by 

9.0% in 2021–2030 if the Chinese government can manage to eliminate the current 

unused rate by half by 2030. Note the vast amount of unused housing is not necessarily 

a unique phenomenon in China. We encourage researchers and policymakers from other 

economies, especially developing economies with massive new home constructions, to 

take unused housing into consideration when designing decarbonization strategies. 
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Methods 

Data. The raw data are collected from one of the leading online housing listing 

platforms in China. Note that although the literature points out that agents may 

intentionally release fraudulent listings on online platforms to attract attention17, this 

possibility is not a concern for this online platform, because it manually verifies the 

validity of each listing. 

Through web spiders, we collected information on the dwelling units listed on the 

platform in 56 major cities around China between October 2020 and August 2021. We 

then cleaned the sample using the following procedures: (1) We only kept units in 

communities completed between 2001 and 2018, because we only consider dwelling 

units that have been unused for at least two consecutive years after completion; (2) we 

only kept units in communities in the major districts/counties in the city as listed in 

Supplementary Table 1; (3) we dropped outliers as the top and bottom 1% listed units 

in the number of households in the community and unit size, and the top 1% listed units 

in the number of floors; and (4) for each city, we also dropped the top and bottom 1% 

listed units in the unit price. Finally, the working sample includes 1,196,585 listings. 

For each unit, we collected all the information provided on the listing webpage (see, 

e.g., Extended Data Fig. 5), including the listing date and price, locational and physical 

attributes, text descriptions, and, most importantly, all the indoor photos uploaded. We 

collected 6,577,579 photos for the working sample, giving us an average of 5.5 photos 

per listed unit. We also list the number of dwelling units and photos included in each 

city in Supplementary Table 1. 
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Identifying Unused Dwelling Units. Training set construction. We randomly chose 

40,000 units with 233,896 indoor photos from the working sample and hired 

professional taggers to label whether each image belongs to an unused or occupied unit. 

For the taggers’ reference, we provided example photos of unused and occupied units, 

as well as descriptions of what can be used as references for unused rooms. Following 

the guidelines, three taggers labeled each photo. We also examined the photos for which 

the taggers had divergent opinions. 

Extended Data Table 1 reports the tag results for all 233,896 photos, and the ratio 

between unused and occupied classes is about 1:5. Classifiers trained on such a class-

imbalanced dataset tend to be overwhelmed by the larger class and ignore the smaller 

one26. More specifically, in our context, the model is likely to over-classify photos as 

occupied if we directly adopt the original training sample. To avoid this problem, we 

randomly selected 38,322 photos from the occupied group to adjust the ratio between 

the two classes is adjusted to 127. 

Network Architecture. We use ResNet-50, a deep learning network widely used for 

image classification28-30, as our backbone network. Different from convolutional 

networks such as VGG16, ResNet-50 reformulates the layers as learning residual 

functions with reference to the layer inputs, instead of learning unreferenced functions, 

enabling the network to be deeper and achieve higher classification accuracy31. The 

architecture of the network we used is depicted in Extended Data Fig. 6. We convert 

the classification network into a regression network, whose continuous output is more 

applicable when we comprehensively consider the outputs of all photos belonging to 
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the same listed unit. More specifically, we use a one-way fully connected layer with 

sigmoid as the output layer to replace the original 1,000-way fully connected layer with 

softmax. In the current setting, our network returns a value ranging from 0 to 1, 

representing the likelihood that the input photo belongs to an unused unit. The key 

component of our network is the convolutional kernel (illustrated by “Conv” in 

Extended Data Fig. 6), which is essentially an n×n weighting matrix that extracts 

features from the outputs of the last layer. In other words, the sequence of stacked 

convolutional layers can be regarded as a more intricate and sophisticated feature 

extractor, which transforms the input RGB image into dozens of features that can be 

comprehended by subsequent layers. The training process is analogous to using the 

training sample to teach the network which features should be extracted and the 

relationships between features and regression results. Besides the original tagged 

images, we generate random horizontal reflections to modify the RGB channel 

intensities of the input training images to prevent overfitting issues32. 

Training. To accelerate training, we start with the pre-trained parameters of ResNet50, 

which was trained using IMAGENET, a dataset containing over 1 million images. Then, 

we fine-tune the model based on our dataset of tagged photos. We randomly choose 90% 

of the tagged photos as the training set and the remaining 10% as the testing set. Using 

a batch size of 96 and a learning rate that initializes at 0.002 and decays by 0.9 per 10 

epochs, we train the model with an Adam optimizer for 1,000 epochs. 

Because the output result is a continuous possibility, we classify the photo based 

on a designated threshold. Specifically, if the output result is larger than the designated 
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threshold, the photo is classified as positive (i.e., unused). Similarly, if the output result 

is smaller than the designated threshold, the photo is classified as negative (i.e., 

occupied). To select an optimized threshold, we use F1-Score, a commonly used metric 

for evaluating the performance of deep learning models33,34, as the evaluation metric. 

As listed in eq. (1) and eq. (2), True Positives (TP) are examples correctly classified as 

positives, False Positives (FP) refer to negative examples incorrectly classified as 

positives, True Negatives (TN) correspond to negative examples correctly labeled as 

negative, and False Negatives (FN) refer to positive examples incorrectly labeled as 

negatives. Precision reflects the capacity of a classification model to identify only 

relevant data, whereas Recall reflects the ability to identify all relevant cases within a 

dataset35. F1-Score is the harmonic mean of Precision and Recall, allowing it to assess 

the model comprehensively: 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (1) 

 

 𝑟𝑒𝑐𝑎𝑙𝑙	 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2) 

 

 𝐹! 	= 2 × "#$%&'&()×#$%+,,
"#$%&'&()-#$%+,,

. (3) 

Extended Data Fig. 7 depicts the three metrics at various thresholds. When the 

threshold is 0.44, we get the highest F1-Score of 0.897, with a Precision of 90.1% and 

a Recall of 89.3%. For simplicity, in the baseline estimate, we directly apply the 

threshold of 0.5 to distinguish between the unused and occupied classes. Under this 

threshold, Precision is 91.4% and Recall is 87.5%. 

Single Photo Prediction. We send each of the 6,577,579 photos into the trained model. 
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The mean value of the predicted likelihood is 0.24, whereas the standard deviation is 

0.34. As Panel A of Extended Data Fig. 8 shows, the distribution of prediction 

concentrates around 0 (i.e., 100% to be occupied) and 1 (i.e., 100% to be unused); 

specifically, 88% of predicted results are smaller than 0.2 or larger than 0.8. Among all 

the 6,577,579 photos, 1,284,981 (19.5%) have a prediction value larger than the 

threshold of 0.5 and hence are classified as unused. 

Dwelling Unit Classification. For each of the 1,196,585 listed units, we calculate the 

average prediction value of all the photos associated with the unit as its unit-level 

prediction value. The unit-level prediction has a mean value of 0.23 and a standard 

deviation of 0.31. As Panel B of Extended Data Fig. 8 demonstrates, the unit-level 

predictions are still centered around 0 and 1, with 89% of units possessing a prediction 

value smaller than 0.2 or larger than 0.8. Given the threshold of 0.5, 211,498 (17.7%) 

units are identified as unused, while the other 985,087 are identified as occupied. 

Converting Listing-Based Unused Rate to Stock-Based Unused Rate. Suppose S 

dwelling units exist in the housing stock of city X at time T; r percent of the stock is 

still unused (i.e., the stock-based unused rate, or SUR), and 1-r has been occupied. 

Here, we focus on two potential differences between the unused and occupied groups. 

First, the selling probability may differ between the unused and occupied groups. We 

assume the selling probability of occupied units during our sample period is p and that 

of unused units is qp. Second, the degree to which these two groups rely on online 

platform listings may also vary. We assume d of occupied units are listed on our online 

platform, whereas the corresponding ratio for unused units is rd. Accordingly, LUR can 
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be calculated as 

 𝐿𝑈𝑅 = .×./0×1"×#2
.×(!4./0)×"×2-.×./0×1"×#2

. (4) 

Then, we can have 
 𝑆𝑈𝑅 = 6/0

6/046/0×1×#-1×#
. (5) 

We estimate q, the ratio between the selling probability of unused and occupied 

groups, based on the transaction record data from the online listing platform. 

Specifically, for each listed unit, the online platform reports the date of the prior sale of 

the unit (i.e., when the current owner of the listed unit purchased the unit from the new 

home or resale market), allowing us to calculate the holding period of the current owner. 

We can hence calculate the average lengths of holding periods for the unused and 

occupied groups, respectively, in each city, and q can be calculated as 

 
𝑞 = 𝑠𝑒𝑙𝑙𝑖𝑛𝑔	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑢𝑛𝑢𝑠𝑒𝑑	𝑢𝑛𝑖𝑡𝑠

𝑠𝑒𝑙𝑙𝑖𝑛𝑔	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑	𝑢𝑛𝑖𝑡𝑠 =

!
"#$%"&$	()*+,-&	.$%,)+	*$-&/(	)0	1-12$+	1-,/2	

!
"#$%"&$	()*+,-&	.$%,)+	*$-&/(	)0	)331.,$+	1-,/2	

= +7$#+8$	:(,;&)8	"$#&(;	,$)8<:	(=	(%%>"&$;	>)&<'
+7$#+8$	:(,;&)8	"$#&(;	,$)8<:	(=	>)>'$;	>)&<'

. 
(6) 

For r, the difference in the likelihood of listed units appearing on the online 

platform, we assume it equals 1 in the baseline estimate based on the following reasons. 

First, the China Institute of Real Estate Appraisers and Agents (the Chinese counterpart 

of the National Association of Realtors) reports that over 85% of housing resale 

transactions in China are assisted by professional agents, who in almost all cases rely 

heavily on online platforms to disseminate information. Therefore, one can assume a 

very high proportion of listings would appear on online platforms, leaving little 

potential for differences between unused and occupied groups. Second, existing studies 

in both the U.S. and China indicate occupancy status is not a key determinant of whether 

sellers choose an agent service or online listing service36,37. Third, to test whether the 
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online platform contains significant sampling biases, we collected listing data for five 

sample cities between November 2020 and March 2021 from both our online platform 

and another leading online listing platform in China, and then applied the same 

classification procedures to calculate the city-level LURs for each platform. As 

Extended Data Table 2 shows, the LURs based on these two platforms are highly 

consistent; in particular, the LURs for our platform are neither systematically higher 

nor lower than those based on the other platform. We can thus safely assume the online 

platform we choose neither oversamples nor undersamples unused units across all 

online listings. 

In the calculation, because Fig. 4 indicates LUR substantially varies with building 

age, we split the housing communities in a city into four groups according to the year 

of construction completion. The first three groups include housing communities 

completed in 2016–2018 (i.e., with buildings aged between 3 and 5 years), 2013–2015 

(6–8 years), and 2010–2012 (9–11 years), respectively, whereas the last group 

comprises communities completed in 2001–2009 (12–20 years). For each city, we first 

calculate the LUR and q for each building-age cohort. Then, we calculate the SUR for 

each building-age cohort based on eq. (5). Finally, we calculate the weighted average 

of SUR for all four building-age cohorts, weighted by the volume of housing 

completions in the corresponding years in the city as reported by the local statistical 

authority. 

Conservative estimate of the unused rate. We expect the baseline estimate based on 

the aforementioned parameters to achieve an estimate of the most probable SUR. We 
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also evaluate a conservative estimate, which we expect to yield a lower bound of SUR. 

Compared with the baseline estimate, the conservative estimate alters two key 

parameters. First, in classifying the unused and occupied units based on indoor photos, 

instead of adopting the conventional threshold of 0.5, we use F0.5-Score as the new 

metric to get the threshold, which values Precision more than Recall. F0.5-Score is 

calculated as follows: 

 𝐹?.A 	= (1 + 0.5B) × "#$%&'&()×#$%+,,
?.A4×"#$%&'&()-#$%+,,

. (7) 

We obtain the maximum F0.5-Score of 0.922 when the threshold is 0.7, with 

Precision improving from 91.4% to 95.6% and Recall decreasing from 87.5% to 80.7%. 

A higher Precision ensures the model is less likely to misclassify occupied units to the 

class of unused. Under the new threshold of 0.7, the number of unused units is reduced 

to 180,600 from 211,497 in the baseline estimate. 

Second, instead of assuming r equals 1 when converting LUR to SUR, we consider 

the possibility that unused units may have a higher probability of being listed on online 

platforms. Specifically, as described above, the official statistics indicate 85% of 

housing resales are assisted by professional agents. As a most extreme case, we assume 

100% of unused listed units are assisted by agents and therefore appear on online 

platforms; in this scenario, for each sample city, we can impute the share of occupied 

units assisted by agents (and hence listed online) based on the estimated LUR, bringing 

the weighted average of being assisted by agents of both groups to 85%. We then use 

the imputed r, instead of the value of 1, in eq. (5) to convert LUR to SUR. 

Carbon emission calculations. Basic setting. For city i, between 2001 and 2020, we 
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can observe the annual series of housing completions (in floor area), AreaCompletioni,t. 

Meanwhile, we can impute the annual series of total housing stock (in floor area), 

AreaStocki,t, between 2001 and 2020, which equals 

 AreaStocki,t = AreaStocki,t-1 + AreaCompletioni,t - AreaDemolitioni,t, (8) 

where AreaDemolitioni,t refers to the floor area of housing demolition in the city-year, 

which is calculated based on the annual demolition rate of 2% with the expected service 

lifespan of 50 years as required by the technique code in China38. To calculate the 

housing stock in 2000, we use the city’s urban population and per capita living space, 

as reported by the 2000 Population Census.  

Note that, as revealed in this study, a portion of AreaStocki,t had never been 

occupied by the end of year t. Here, we assume the housing stock in 2000 was 

completely occupied by 2001 due to the inadequate housing supply during the pre-

reform era and only consider the unused units completed after 2001. In our data, we 

can directly observe the SUR associated with each building year cohort in early 2021 

(or the end of 2020). Hence, based on AreaCompletioni,t and the building-year-specific 

SUR, we can calculate the volume of unused housing in each building year cohort at 

the end of 2020 (SUR of the year 2019 cohort is set as 100% by definition), denoted by 

AreaUnusedi,2020,BuildingYear, from AreaUnusedi,2020,2001 to AreaUnusedi,2020,2019. Note that, 

originally, the unused rate is calculated based on the proportion of units, and here we 

apply it to the floor area volume. Considering that larger units are more likely to be 

unused, as revealed in Fig. 4 in the main text, this conversion achieves a lower bound 

of the estimate on unused volume (and the associated carbon emissions). By 

aggregating the volume of unused housing in the building year cohorts between 2001 
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and 2019, we can get the total volume of unused housing at the end of 2020, or 

AreaUnused i,2020:  

AreaUnusedi,2020 = ∑ 𝐴𝑟𝑒𝑎𝑈𝑛𝑢𝑠𝑒𝑑&,B?B?,D>&,;&)8	E$+#B?!F
D>&,;&)8	E$+#GB??! . (9) 

We can then get the floor area of occupied units, or AreaOccupiedi,2020. Note we 

assume it is reasonable for any housing unit to be unused during the first two years after 

its completion, so we also need to further extract the housing completion area in 2020 

from the housing stock area in 2020 to calculate the floor area of occupied units at the 

end of 2020:  

 AreaOccupiedi,2020 = AreaStocki,2020 - AreaUnusedi,2020 - AreaCompletioni,2020. (10) 

AreaOccupiedi,t can be interpreted as the floor area of actual housing demand in 

the city-year. For each sample city, we can use the logistic function to regress the annual 

series of AreaOccupiedi,t between 2001 and 2020 and then use the estimated coefficients 

to forecast AreaOccupiedi,t between 2021 and 2030. 

Actual carbon emissions in 2020. The residential sector’s overall carbon emissions 

consist of the construction and operation stages. The volume of residential building 

construction emissions in year t, CE_C_Actuali,t, is calculated as follows: 

 CE_C_Actuali,t = AreaCompletioni,t * CO2_Ci,t, (11) 

where CO2_Ci,t refers to the embodied carbon intensity factor during the construction 

stage (including the construction material productions, such as cement and steel) for the 

residential sector in year t. 

For the operation stage, the volume of carbon emissions of the residential building stock 

in year t, CE_O_Actuali,t, is calculated as 

 
CE_O_Actuali,t = AreaOccupiedi,t * (CO2_Oi,t + CO2_CHi,t) +  

AreaUnusedi,t * CentralHeatingi * CO2_CHi,t, 
(12) 
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where CO2_Oi,t indicates the operational carbon intensity factor (such as cooking and 

lighting) in China’s residential sector, and for cities located in Northern China, we also 

consider the carbon emissions associated with residential heating, with the intensity 

factor of CO2_CHi,t. Here, we assume an unused unit does not generate operational 

carbon emissions. As for the heating emissions, we assume that if an unused unit uses 

the individual household based heating system, the owner will turn off the system, and 

hence, the unit would no longer generate heating emissions. However, for dwelling 

buildings with central-heating systems, whose proportion in Northern Chinese cities 

reaches as high as 90% according to our dataset, the heating systems still work for the 

unused dwelling units. For this purpose, we adopt CentralHeatingi to indicate the 

proportion of unused housing with central heating in city i, which is calculated based 

on the same dataset of listing-unit information that we use to calculate LUR. 

The three carbon intensity factors (CO2_Ci,t, CO2_Oi,t, and CO2_CHi,t) indicate 

China’s decarbonization efforts in the residential sector. Specifically, we consider four 

key decarbonization measures: lowering steel- and cement-production carbon intensity 

and promoting prefabricated buildings, which can lower CO2_Ci,t, and promoting green 

buildings and renovating existing buildings for energy efficiency improvement, which 

can lower CO2_Oi,t and CO2_CHi,t. Specifically, we adopt 465.59 kg/m2 for 

CO2_Ci,2000, 40.76 kg/m2 for CO2_Oi,2000, and 30.86 kg/m2 for CO2_CHi,200022-25,39-42. 

Then, based on the official reports on the progress of these four measures, the 

quantitative estimate of their effect on carbon emission intensity found in the 

literature22-25,43-46, and the composition of the housing stock, we calculate the carbon 
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intensity factors for each subsequent year. 

Finally, we can have the city-level total emission volume in any specific year. Take 

the year 2020 as an example: 

 CE_Actuali,2020 = 𝐶𝐸_𝐶_𝐴𝑐𝑡𝑢𝑎𝑙&,B?B? 	+ 	𝐶𝐸_𝑂_𝐴𝑐𝑡𝑢𝑎𝑙&,B?B?. (13) 

Carbon emissions from unused housing in 2020. For each square meter of dwelling 

space that remained unused at the end of 2020 (note we do not include the carbon 

emissions of unused units completed in 2019 and 2020, because we assume they are 

not preventable), we consider its related carbon emissions from two perspectives. The 

carbon emissions for the operation stage are straightforward: as described in the 

previous subsection, we assume unused housing does not generate operational carbon 

emissions, but it would still incur central-heating emissions if it is located in a northern 

city. For the construction stage, we convert the lump-sum construction emissions to the 

annual amortized emissions47. Because the literature has not achieved a consensus on 

the “discount rate” of carbon emissions, we choose to evenly amortize the construction 

carbon emissions on the expected service lifespan of 50 years. Because, by definition, 

the unused period can only exist at the beginning of the lifespan, adopting the 0% 

discount rate (i.e., even amortization) achieves a lower bound of the annual amortized 

emissions. Therefore, for dwelling units that were completed in the year BuildingYear 

and remained unused at the end of 2020, the associated waste in carbon emissions in 

2020 can be calculated as 

 
CE_Unusedi,2020 = ∑ 𝐶𝐸_𝑈𝑛𝑢𝑠𝑒𝑑&,B?B?,D>&,;&)8E$+# =B?!H

D>&,;&)8E$+#GB??!

∑ (2% ∗ 𝐴𝑟𝑒𝑎𝑈𝑛𝑢𝑠𝑒𝑑&,B?B?,D>&,;&)8E$+# ∗ 𝐶𝑂2_𝐶&,D>&,;&)8E$+# +B?!H
D>&,;&)8E$+#GB??!

𝐴𝑟𝑒𝑎𝑈𝑛𝑢𝑠𝑒𝑑&,B?B?,D>&,;&)8E$+# ∗ 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐻𝑒𝑎𝑡𝑖𝑛𝑔& ∗ 𝐶𝑂2_𝐶𝐻&,B?B?). 
(14) 

Carbon emission reductions by decarbonization measures in 2020. We consider a 
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scenario in which none of the four decarbonization initiatives are implemented and the 

carbon intensity factors remain constant at 2000 levels. In this non-decarbonization 

scenario, the residential sector’s total carbon emissions can be calculated as  

 
CE_Highi,2020 = 𝐴𝑟𝑒𝑎𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛&,B?B? ∗ 𝐶𝑂2_𝐶&,B??? 	+ 	𝐴𝑟𝑒𝑎𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑&,B?B? ∗
(𝐶𝑂2_𝑂&,B??? + 𝐶𝑂2_𝐶𝐻&,B???) +	𝐴𝑟𝑒𝑎𝑈𝑛𝑢𝑠𝑒𝑑&,B?B? ∗ 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐻𝑒𝑎𝑡𝑖𝑛𝑔& ∗

𝐶𝑂2_𝐶𝐻&,B???. 
(15) 

The difference between CE_Highi,2020 and CE_Actuali,2020 reflects the carbon-emission-

reduction contribution of these four decarbonization measures. 

Forecast on carbon emissions in 2021–2030. Based on AreaOccupiedi,t, we can impute 

the series of annual floor areas of housing completion between 2021 and 2030, 

AreaCompletion_Basei,t, which could make the unused rate remain at the same level as 

the end of 2020. Specifically, recall the SUR is defined as 

 
𝑈𝑛𝑢𝑠𝑒𝑑𝑅𝑎𝑡𝑒&,< = 𝑈𝑛𝑢𝑠𝑒𝑑𝑅𝑎𝑡𝑒&,B?B?

= (𝐴𝑟𝑒𝑎𝑆𝑡𝑜𝑐𝑘&,< − 𝐴𝑟𝑒𝑎𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑&,<)/𝐴𝑟𝑒𝑎𝑆𝑡𝑜𝑐𝑘&,< . 
(16) 

Based on eq. (8) and eq. (16), we can have 

 
𝐴𝑟𝑒𝑎𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛_𝐵𝑎𝑠𝑒&,< = QR𝐴𝑟𝑒𝑎𝑆𝑡𝑜𝑐𝑘&,<4! − 𝐴𝑟𝑒𝑎𝐷𝑒𝑚𝑜𝑙𝑖𝑡𝑖𝑜𝑛&,<T ∗

(𝑈𝑛𝑢𝑠𝑒𝑑𝑅𝑎𝑡𝑒&,B?B? − 1) + 𝐴𝑟𝑒𝑎𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑&,<U/(1 − 𝑈𝑛𝑢𝑠𝑒𝑑𝑅𝑎𝑡𝑒&,B?B?). 
(17) 

We also assume the carbon intensity factors are consistent with those in 2020. Based 

on these assumptions, the carbon emission in the baseline scenario equals 

 

CE_Baselinei = ∑ V𝐴𝑟𝑒𝑎𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛D+'$&,< ∗ (𝐶𝑂2_𝐶&,B?B? + 𝐴𝑟𝑒𝑎𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑&,< ∗
B?I?
<GB?B!

(𝐶𝑂2_𝐶&,B?B? + 𝐶𝑂2_𝐶𝐻&,B?B?) + (𝐴𝑟𝑒𝑎𝑆𝑡𝑜𝑐𝑘&,< − 𝐴𝑟𝑒𝑎𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑&,<) ∗

𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐻𝑒𝑎𝑡𝑖𝑛𝑔& ∗ 𝐶𝑂2_𝐶𝐻&,B?B?W. 

(18) 

In the following scenarios, we assume the unused rate of each city at the end of 2030 

gradually reduces to 75%, 50%, and 25% of the level observed at the end of 2020. 
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Utilizing these assumed rates of unused housing, we can impute the series of annual 

floor areas of housing completion by using the corresponding UnusedRatei,t in eq. (17), 

as well as the annual series of AreaStocki,t. We can then calculate the total carbon 

emissions in 2021–2030 in the city under each scenario. 
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Fig. 1 | Method of Estimating Unused Housing Rate. This figure displays our conceptual method 
of calculating the stock-based unused housing rate based on the listing dataset. Step 1 presents the 
method of identifying all the unused dwelling units for each sample city using a supervised deep 
learning network, whose details are shown in Extended Data Fig. 6. See Extended Data Fig. 1 for 
examples of photo-level classifications about the use status. Step 2 converts the listing-based unused 
rate into the stock-based unused rate.  
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Fig. 2 | City-Level Unused Housing Rates in the Baseline Scenario. This map displays the spatial 
distribution of city-level SURs in the baseline scenario in early 2021. The unused rate for each city 
is denoted by the gradient from dark blue to dark red. Red denotes cities where the SURs are higher 
than the median, whereas blue denotes cities lower than the median. Blank spaces indicate data 
unavailability. Extended Data Fig. 2 reproduces this figure under a conservative scenario. The base 
map is from the website of the Ministry of Natural Resources, China. 
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Fig. 3 | Relationship between Housing Oversupply and Unused Rates. The blue bars indicate 
the mean value of city-level SURs for the low, medium, and high groups, divided based on the 
tertiles in terms of (A) the ratio between aggregated housing completions in 2001–2020 and 
population growth during the same period, which indicates excess housing supply, (B) the quantity 
of flat land area in the city normalized by the population in 2000, which measures the land supply 
elasticity, and (C) the government budget deficits in 2001–2020, which measures local governments’ 
incentives to sell residential land. Error bars depict 95% confidence intervals. 
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Fig. 4 | Within-City Variances of the Unused Rate. (A) indicates the mean value of the 
community-level SURs for the four groups, divided based on the quantiles of distance to the city 
center, respectively. (B) indicates the mean value of the unit-level SURs for the groups with unit 
areas of no more than 90 sq.m, between 90 and 115 sq.m, between 115 and 140 sq.m, and more than 
140 sq.m, respectively. (C) indicates the mean value of the unit-level SURs for the groups with 
building years between 3 and 5 years, 6–8 years, 9–11 years, and 12–20 years, respectively. Error 
bars depict 95% confidence intervals. 
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Fig. 5 | Impact of Unused Housing on Carbon Emissions in 2020. This figure depicts the city-
level carbon emissions generated by unused housing in 2020. The 56 cities in our sample are sorted 
by the total carbon emissions generated by unused housing in 2020.  
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Fig. 6 | Contribution of Unused Rate Decreasing on Carbon Emission Reductions in 2021-2030. 
This figure indicates the percentage of carbon emission reduction in Chinese residential sector after 
the unused rate is gradually cut off by 25%, 50%, and 75% throughout 2021 and 2030, respectively. 
The benchmark scenario is that the unused rate at the end of 2030 remains at the same level as at 
the end of 2020 (for the national average, we adopt the weighted average of 56 sample cities). We 
make a forecast from both the national level (A) and for three representative cities: (B) Beijing, 
which represents the cities with low unused rates; (C) Tianjin, which represents the cities with 
medium unused rates; and (D) Xi’an, which represents the cities with high unused rates. 
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Extended Data Fig. 1 | Examples of Photos for Unused and Occupied Dwelling Units. This 
figure displays representative examples of indoor photos from the online housing listing platform. 
The rooms in Type I belong to units without interior decoration, whereas the rooms in Type II are 
partially decorated; obviously, neither of these two types of units meets the ordinary living standard. 
The Type III rooms are well decorated, but their pristine state and brand-new furniture indicate they 
have never been inhabited. Type IV rooms, on the other hand, are filled with an abundance of daily 
items, showing they are currently occupied. Type V rooms are nearly empty; nevertheless, we can 
still infer that the rooms were once occupied based on the traces of usage on the walls, floors, and 
ceilings, even if the owners/renters have moved out. Accordingly, we classify the dwelling units in 
Types I, II, and III as “unused,” and units in Types IV and V as “occupied.” 
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Extended Data Fig. 2 | City-Level Unused Housing Rates in the Conservative Scenario. This 
map displays the spatial distribution of city-level SURs in the conservative scenario, which is 
reproduced based on Fig. 2. 
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Extended Data Fig. 3 | Community-Level Unused Housing Rates in Xi’an. This map displays 
the spatial distribution of communities in Xi’an. The LUR for each community is denoted by the 
gradient from dark blue to dark red. 
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Extended Data Fig. 4 | Impact of Unused Housing on Carbon Emissions in 2020. This figure 
depicts the city-level carbon emissions generated by unused housing in 2020 in the conservative 
scenario, which is reproduced based on Fig. 5.  
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Extended Data Fig. 5 | Example of Online Housing Listing Webpage. This figure provides a 
representative example of an online housing listing webpage on the platform from which we 
collected the listing information. As required by the platform, we omit all information that can be 
used to trace the agent’s or platform’s name. 
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Extended Data Fig. 6 | Architecture of the Classification Network. This graph illustrates the 
detailed architecture of the deep learning network depicted in Step 1 of Fig. 1. 
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Extended Data Fig. 7 | Relationship between F1-Score and Threshold at the Photo-Level 
Classification. This graph depicts the three metrics of the training outcome of the classification 
model under various thresholds. The red line denotes the metric of precision, which reflects the 
ability of a classification model to identify only relevant data. The blue line denotes the metric of 
recall, which reflects the ability to identify all relevant cases within a dataset. The dashed line 
denotes the F1-Score (i.e., the harmonic mean of “Precision” and “Recall”), by which we can 
comprehensively assess the performance of the model. 
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(A) Photo Level 

 
(B) Unit Level 

Extended Data Fig. 8 | Distribution of Classification Results. (A) depicts the distribution of the 
prediction results of the classification model at the photo level, which refers to the probability of 
being unused, Px,k, in Step 1 of Fig.1. (B) depicts the distribution of prediction results of the 
classification model at the unit level, which refers to the probability of being unused, Px, in Step 1 
of Fig.1. 
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Extended Data Table 1: Tag Distribution in the Training Sample 

 Original (Before Undersampling) Working (After Undersampling) 
Unused 38,322 38,322 

Occupied 195,574 38,322 

This table reports the tag results for photos in the training sample before and after undersampling. 
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Extended Data Table 2: Differences in LUR Based on Two Online Platforms 

City 
LUR Based on  
Our Platform 

LUR Based on  
Another Leading Platform 

LUR Difference 

A 2.91% 3.33% -0.42% 
B 8.68% 7.47% 1.21% 
C 12.35% 11.69% 0.66% 
D 20.83% 22.89% -2.06% 
E 40.95% 38.46% 2.49% 

This table reports the city-level LURs calculated based on the listing data for five sample cities 
between November 2020 and March 2021 from both our online platform and another leading online 
listing platform in China. 

 

 


